新书推介:《语义网技术体系》
作者:瞿裕忠,胡伟,程龚
   XML论坛     W3CHINA.ORG讨论区     计算机科学论坛     SOAChina论坛     Blog     开放翻译计划     新浪微博  
 
  • 首页
  • 登录
  • 注册
  • 软件下载
  • 资料下载
  • 核心成员
  • 帮助
  •   Add to Google

    >> We choose to study algorithmic problems,  not because they are easy,  but because they are hard.
    [返回] 中文XML论坛 - 专业的XML技术讨论区计算机理论与工程『 算法理论与分析 』 → 二分图匹配算法总结 (by phoenixinter, Aug 2006) 查看新帖用户列表

      发表一个新主题  发表一个新投票  回复主题  (订阅本版) 您是本帖的第 22181 个阅读者浏览上一篇主题  刷新本主题   树形显示贴子 浏览下一篇主题
     * 贴子主题: 二分图匹配算法总结 (by phoenixinter, Aug 2006) 举报  打印  推荐  IE收藏夹 
       本主题类别:     
     Logician 帅哥哟,离线,有人找我吗?天蝎座1984-10-28
      
      
      威望:9
      头衔:逻辑爱好者
      等级:研三(收到IBM CRL的Offer了)(版主)
      文章:1219
      积分:10357
      门派:IEEE.ORG.CN
      注册:2005/3/12

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给Logician发送一个短消息 把Logician加入好友 查看Logician的个人资料 搜索Logician在『 算法理论与分析 』的所有贴子 点击这里发送电邮给Logician  访问Logician的主页 引用回复这个贴子 回复这个贴子 查看Logician的博客楼主
    发贴心情 二分图匹配算法总结 (by phoenixinter, Aug 2006)


        最近下决心要把二分图匹配部分的算法都搞搞清楚,努力了几天之后基本上搞定了,下面做一个这个专题的总结。

    一、二分图最大匹配

        二分图最大匹配的经典匈牙利算法是由Edmonds在1965年提出的,算法的核心就是根据一个初始匹配不停的找增广路,直到没有增广路为止。
        匈牙利算法的本质实际上和基于增广路特性的最大流算法还是相似的,只需要注意两点:(一)每个X节点都最多做一次增广路的起点;(二)如果一个Y节点已经匹配了,那么增广路到这儿的时候唯一的路径是走到Y节点的匹配点(可以回忆最大流算法中的后向边,这个时候后向边是可以增流的)。
        找增广路的时候既可以采用dfs也可以采用bfs,两者都可以保证O(nm)的复杂度,因为每找一条增广路的复杂度是O(m),而最多增广n次,dfs在实际实现中更加简短。

    二、Hopcroft-Karp算法

        SRbGa很早就介绍过这个算法,它可以做到O(sqrt(n)*e)的时间复杂度,并且在实际使用中效果不错而且算法本身并不复杂。
        Hopcroft-Karp算法是Hopcroft和Karp在1972年提出的,该算法的主要思想是在每次增广的时候不是找一条增广路而是同时找几条点不相交的最短增广路,形成极大增广路集,随后可以沿着这几条增广路同时进行增广。
        可以证明在寻找增广路集的每一个阶段所寻找到的最短增广路都具有相等的长度,并且随着算法的进行最短增广路的长度是越来越长的,更进一步的分析可以证明最多只需要增广ceil(sqrt(n))次就可以得到最大匹配(证明在这里略去)。
        因此现在的主要难度就是在O(e)的时间复杂度内找到极大最短增广路集,思路并不复杂,首先从所有X的未盖点进行BFS,BFS之后对每个X节点和Y节点维护距离标号,如果Y节点是未盖点那么就找到了一条最短增广路,BFS完之后就找到了最短增广路集,随后可以直接用DFS对所有允许弧(dist[y]=dist[x]+1,可以参见高流推进HLPP的实现)进行类似于匈牙利中寻找增广路的操作,这样就可以做到O(m)的复杂度。
        实现起来也并不复杂,对于两边各50000个点,200000条边的二分图最大匹配可以在1s内出解,效果很好:)

    三、二分图最优匹配

        二分图最优匹配的经典算法是由Kuhn和Munkres独立提出的KM算法,值得一提的是最初的KM算法是在1955年和1957年提出的,因此当时的KM算法是以矩阵为基础的,随着匈牙利算法被Edmonds提出之后,现有的KM算法利用匈牙利树可以得到更漂亮的实现。
        KM算法中的基本概念是可行顶标(feasible vertex labeling),它是节点的实函数并且对于任意弧(x,y)满足l(x)+l(y)≥w(x,y),此外一个概念是相等子图,它是G的一个生成子图,但是只包含满足l(xi)+l(yj)=w(xi,yj)的所有弧(xi,yj)。
        有定理:如果相等子图有完美匹配,那么该匹配是最大权匹配,证明非常直观也非常简单,反设其他匹配是最优匹配,它的权必然比相等子图的完美匹配的权要小。
        KM算法主要就是控制了怎样修改可行顶标的策略使得最终可以达到一个完美匹配,首先任意设置可行顶标(如每个X节点的可行顶标设为它出发的所有弧的最大权,Y节点的可行顶标设为0),然后在相等子图中寻找增广路,找到增广路就沿着增广路增广。
        而如果没有找到增广路呢,那么就考虑所有现在在匈牙利树中的X节点(记为S集合),所有现在在匈牙利树中的Y节点(记为T集合),考察所有一段在S集合,一段在not T集合中的弧,取
        delta =  min {l(xi)+l(yj)-w(xi,yj),xi ∈ S, yj ∈ not T}
        明显的,当我们把所有S集合中的l(xi)减少delta之后,一定会有至少一条属于(S,not T)的边进入相等子图,进而可以继续扩展匈牙利树,为了保证原来属于(S,T)的边不退出相等子图,把所有在T集合中的点的可行顶标增加delta。
        随后匈牙利树继续扩展,如果新加入匈牙利树的Y节点是未盖点,那么找到增广路,否则把该节点的对应的X匹配点加入匈牙利树继续尝试增广。
        复杂度分析:由于在不扩大匹配的情况下每次匈牙利树做如上调整之后至少增加一个元素,因此最多执行n次就可以找到一条增广路,最多需要找n条增广路,故最多执行n^2次修改顶标的操作,而每次修改顶标需要扫描所有弧,这样修改顶标的复杂度就是O(n^2)的,总的复杂度是O(n^4)的。
        事实上我现在看到的几个版本的实现都是这样实现的,但是实际效果还不错,因为这个界通常很难达到。
        对于not T的每个元素yj,定义松弛变量slack(yj) = min{l(xi)+l(yj)-w(xi,yj),xi ∈ S},很明显的每次的delta=min{slack(yj),yj∈ not T},每次增广之后用O(n^2)的时间计算所有点的初始slack,由于生长匈牙利树的时候每条弧的顶标增量相同,因此修改每个slack需要常数时间(注意在修改顶标后和把已盖Y节点对应的X节点加入匈牙利树的时候是需要修改slack的)。这样修改所有slack值时间是O(n)的,每次增广后最多修改n次顶标,那么修改顶标的总时间降为O(n^2),n次增广的总时间复杂度降为O(n^3)。事实上我这样实现之后对于大部分的数据可以比O(n^4)的算法快一倍左右。

    四、二分图的相关性质

        本部分内容主要来自于SRbGa的黑书,因为比较简单,仅作提示性叙述。
        (1) 二分图的最大匹配数等于最小覆盖数,即求最少的点使得每条边都至少和其中的一个点相关联,很显然直接取最大匹配的一段节点即可。
        (2) 二分图的独立数等于顶点数减去最大匹配数,很显然的把最大匹配两端的点都从顶点集中去掉这个时候剩余的点是独立集,这是|V|-2*|M|,同时必然可以从每条匹配边的两端取一个点加入独立集并且保持其独立集性质。
        (3) DAG的最小路径覆盖,将每个点拆点后作最大匹配,结果为n-m,求具体路径的时候顺着匹配边走就可以,匹配边i→j',j→k',k→l'....构成一条有向路径。

    五、稳定婚姻问题

        稳定婚姻问题是一个很有意思的匹配问题,有n位男士和n位女士,每一个人都对每个异性有一个喜好度的排序,代表对他的喜爱程度,现在希望给每个男士找一个女士作配偶,使得每人恰好有一个异性配偶。如果男士u和女士v不是配偶但喜欢对方的程度都大于喜欢各自当前配偶的程度,则称他们为一个不稳定对。稳定婚姻问题就是希望找出一个不包含不稳定对的方案。
        算法非常简单,称为求婚-拒绝算法,每位男士按照自己喜欢程度从高到低依次给每位女士主动求婚直到有一个女士接受他,对于每个女士,如果当前向她求婚的配偶比她现有的配偶好则抛弃当前配偶,否则不予理睬,循环往复直到所有人都有配偶。有趣的是,看起来是女士更有选择权,但是实际上最后的结果是男士最优的(man-optimal)。
        首先说明最后匹配的稳定性,随着算法的执行,每位女士的配偶越来越好,而每位男士的配偶越来越差。因此假设男士u和女士v形成不稳定对,u一定曾经向v求过婚,但被拒绝。这说明v当时的配偶比u更好,因此算法结束后的配偶一定仍比u好,和不稳定对的定义矛盾,类似的,方式我们考虑最后一个被抛弃的男士和抛弃这位男士的女士,不难得出这个算法一定终止的结论。
        如果存在一个稳定匹配使得男士i和女士j配对,则称(i,j)是稳定对。对于每个男士i,设所有稳定对(i,j)中i 最喜欢的女士为best(i),则可以证明这里给出的算法对让每位男士i与best(i)配对。对于所有男士来说,不会有比这更好的结果了,而对于女士则恰恰相反,对于她们来说不会有比这更糟的结果了,因此这个算法是男士最优的。
        算法一定得到稳定匹配,并且复杂度显然是O(n^2),因为每个男士最多考虑每个女士一次,考虑的时间复杂度是O(1),当然了,需要作一定的预处理得到这个复杂度。


       收藏   分享  
    顶(0)
      




    ----------------------------------------------
    Three passions, simple but overwhelmingly strong, 
    have governed my life: the longing for love, the
    search for knowledge, and unbearable pity for the
    suffering of mankind.
                                - Bertrand Russell

    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2006/12/7 19:35:00
     
     phoenixinter 帅哥哟,离线,有人找我吗?水瓶座1987-2-12
      
      
      威望:1
      头衔:Ikki
      等级:大四(GRE考了1600分!)(版主)
      文章:127
      积分:1126
      门派:Lilybbs.net
      注册:2005/3/14

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给phoenixinter发送一个短消息 把phoenixinter加入好友 查看phoenixinter的个人资料 搜索phoenixinter在『 算法理论与分析 』的所有贴子 点击这里发送电邮给phoenixinter  引用回复这个贴子 回复这个贴子 查看phoenixinter的博客2
    发贴心情 
    我上次胡扯什么算法学习……然后就被转载……
    这次正经的写了一篇技术帖。。就没人看-_-

    ----------------------------------------------
    phoenixinter
    algorithm bm@lilybbs
    ikki@poj

    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2006/12/7 20:50:00
     
     Logician 帅哥哟,离线,有人找我吗?天蝎座1984-10-28
      
      
      威望:9
      头衔:逻辑爱好者
      等级:研三(收到IBM CRL的Offer了)(版主)
      文章:1219
      积分:10357
      门派:IEEE.ORG.CN
      注册:2005/3/12

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给Logician发送一个短消息 把Logician加入好友 查看Logician的个人资料 搜索Logician在『 算法理论与分析 』的所有贴子 点击这里发送电邮给Logician  访问Logician的主页 引用回复这个贴子 回复这个贴子 查看Logician的博客3
    发贴心情 
    哈哈。
    技术帖看着费劲,很多人就懒得看了嘛……
    :)

    ----------------------------------------------
    Three passions, simple but overwhelmingly strong, 
    have governed my life: the longing for love, the
    search for knowledge, and unbearable pity for the
    suffering of mankind.
                                - Bertrand Russell

    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2006/12/8 14:21:00
     
     entrails 帅哥哟,离线,有人找我吗?
      
      
      等级:大一新生
      文章:0
      积分:54
      门派:XML.ORG.CN
      注册:2007/9/7

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给entrails发送一个短消息 把entrails加入好友 查看entrails的个人资料 搜索entrails在『 算法理论与分析 』的所有贴子 引用回复这个贴子 回复这个贴子 查看entrails的博客4
    发贴心情 
    以下是引用Logician在2006-12-7 19:35:00的发言:
         最近下决心要把二分图匹配部分的算法都搞搞清楚,努力了几天之后基本上搞定了,下面做一个这个专题的总结。

    三、二分图最优匹配

        二分图最优匹配的经典算法是由Kuhn和Munkres独立提出的KM算法,值得一提的是最初的KM算法是在1955年和1957年提出的,因此当时的KM算法是以矩阵为基础的,随着匈牙利算法被Edmonds提出之后,现有的KM算法利用匈牙利树可以得到更漂亮的实现。
        KM算法中的基本概念是可行顶标(feasible vertex labeling),它是节点的实函数并且对于任意弧(x,y)满足l(x)+l(y)≥w(x,y),此外一个概念是相等子图,它是G的一个生成子图,但是只包含满足l(xi)+l(yj)=w(xi,yj)的所有弧(xi,yj)。
        有定理:如果相等子图有完美匹配,那么该匹配是最大权匹配,证明非常直观也非常简单,反设其他匹配是最优匹配,它的权必然比相等子图的完美匹配的权要小。
        KM算法主要就是控制了怎样修改可行顶标的策略使得最终可以达到一个完美匹配,首先任意设置可行顶标(如每个X节点的可行顶标设为它出发的所有弧的最大权,Y节点的可行顶标设为0),然后在相等子图中寻找增广路,找到增广路就沿着增广路增广。
        而如果没有找到增广路呢,那么就考虑所有现在在匈牙利树中的X节点(记为S集合),所有现在在匈牙利树中的Y节点(记为T集合),考察所有一段在S集合,一段在not T集合中的弧,取
        delta =  min {l(xi)+l(yj)-w(xi,yj),xi ∈ S, yj ∈ not T}
        明显的,当我们把所有S集合中的l(xi)减少delta之后,一定会有至少一条属于(S,not T)的边进入相等子图,进而可以继续扩展匈牙利树,为了保证原来属于(S,T)的边不退出相等子图,把所有在T集合中的点的可行顶标增加delta。
        随后匈牙利树继续扩展,如果新加入匈牙利树的Y节点是未盖点,那么找到增广路,否则把该节点的对应的X匹配点加入匈牙利树继续尝试增广。
        复杂度分析:由于在不扩大匹配的情况下每次匈牙利树做如上调整之后至少增加一个元素,因此最多执行n次就可以找到一条增广路,最多需要找n条增广路,故最多执行n^2次修改顶标的操作,而每次修改顶标需要扫描所有弧,这样修改顶标的复杂度就是O(n^2)的,总的复杂度是O(n^4)的。
        事实上我现在看到的几个版本的实现都是这样实现的,但是实际效果还不错,因为这个界通常很难达到。
        对于not T的每个元素yj,定义松弛变量slack(yj) = min{l(xi)+l(yj)-w(xi,yj),xi ∈ S},很明显的每次的delta=min{slack(yj),yj∈ not T},每次增广之后用O(n^2)的时间计算所有点的初始slack,由于生长匈牙利树的时候每条弧的顶标增量相同,因此修改每个slack需要常数时间(注意在修改顶标后和把已盖Y节点对应的X节点加入匈牙利树的时候是需要修改slack的)。这样修改所有slack值时间是O(n)的,每次增广后最多修改n次顶标,那么修改顶标的总时间降为O(n^2),n次增广的总时间复杂度降为O(n^3)。事实上我这样实现之后对于大部分的数据可以比O(n^4)的算法快一倍左右。


    红线处说原属于(S,T)的边不会退出相等子图,这很好理解, 但是一些原相等子图的边是有可能退出相等子图的, 这不会影响算法的正确性?  谁能简单说下为什么

    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2007/9/7 18:23:00
     
     lovezqian 帅哥哟,离线,有人找我吗?
      
      
      等级:大一新生
      文章:0
      积分:54
      门派:XML.ORG.CN
      注册:2007/9/11

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给lovezqian发送一个短消息 把lovezqian加入好友 查看lovezqian的个人资料 搜索lovezqian在『 算法理论与分析 』的所有贴子 引用回复这个贴子 回复这个贴子 查看lovezqian的博客5
    发贴心情 
    实际上相等子图中的边是不会退出相等子图的:
    两端都在交错树中的边(i,j),A[i]+B[j]的值没有变化。也就是说,它原来属于相等子图,现在仍属于相等子图。
    两端都不在交错树中的边(i,j),A[i]和B[j]都没有变化。也就是说,它原来属于(或不属于)相等子图,现在仍属于(或不属于)相等子图。
    X端不在交错树中,Y端在交错树中的边(i,j),它的A[i]+B[j]的值有所增大。它原来不属于相等子图,现在仍不属于相等子图。
    X端在交错树中,Y端不在交错树中的边(i,j),它的A[i]+B[j]的值有所减小。也就说,它原来不属于相等子图,现在可能进入了相等子图,因而使相等子图得到了扩大。
    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2007/9/11 15:48:00
     
     GoogleAdSense
      
      
      等级:大一新生
      文章:1
      积分:50
      门派:无门无派
      院校:未填写
      注册:2007-01-01
    给Google AdSense发送一个短消息 把Google AdSense加入好友 查看Google AdSense的个人资料 搜索Google AdSense在『 算法理论与分析 』的所有贴子 访问Google AdSense的主页 引用回复这个贴子 回复这个贴子 查看Google AdSense的博客广告
    2024/11/1 0:58:48

    本主题贴数5,分页: [1]

    管理选项修改tag | 锁定 | 解锁 | 提升 | 删除 | 移动 | 固顶 | 总固顶 | 奖励 | 惩罚 | 发布公告
    W3C Contributing Supporter! W 3 C h i n a ( since 2003 ) 旗 下 站 点
    苏ICP备05006046号《全国人大常委会关于维护互联网安全的决定》《计算机信息网络国际联网安全保护管理办法》
    108.887ms